Telegram Group & Telegram Channel
🧩 Задача для дата-сайентистов: "Средняя зарплата" (с подвохом)

📖 Описание задачи

У вас есть DataFrame df с данными о зарплатах сотрудников компании:


import pandas as pd

data = {
'employee_id': [1, 2, 3, 4, 5, 6],
'department': ['IT', 'IT', 'HR', 'HR', 'Finance', 'Finance'],
'salary': [100000, None, 50000, None, 70000, None]
}

df = pd.DataFrame(data)
print(df)


Результат:


employee_id department salary
0 1 IT 100000.0
1 2 IT NaN
2 3 HR 50000.0
3 4 HR NaN
4 5 Finance 70000.0
5 6 Finance NaN


В задаче требуется заполнить пропущенные значения зарплат в каждом отделе медианой зарплаты этого отдела.
Если медиана не может быть рассчитана (например, все значения NaN) — оставить NaN.

Вы пишете следующий код:


df['salary_filled'] = df.groupby('department')['salary'].transform(lambda x: x.fillna(x.median()))


Код выполняется без ошибок, но когда вы проверяете результат:


print(df)


Получаете:


employee_id department salary salary_filled
0 1 IT 100000.0 100000.0
1 2 IT NaN 100000.0
2 3 HR 50000.0 50000.0
3 4 HR NaN 50000.0
4 5 Finance 70000.0 70000.0
5 6 Finance NaN 70000.0


Всё вроде бы верно…

Но через неделю приходит заказчик и говорит:

> «Ты заполнил пропуски, но потом выяснилось, что в реальных данных в одном отделе все зарплаты NaN, а значит медиана не существует.
> А в твоём коде при такой ситуации почему-то появляется 0 вместо NaN!»

📝 Вопросы:

1. Почему появилось 0 (хотя ожидалось NaN)?
2. Как переписать код так, чтобы:
- Если медиана существует → заполнить ею NaN
- Если медиана не существует (все значения NaN) → оставить NaN

---

🎯 Что проверяет задача:

Понимание, как median() работает на пустой серии
Понимание, что fillna(np.nan) может привести к замещению на 0 при приведении типов
Умение работать с группами, где нет данных

---

💡 Подсказка:

Если `x.median()` вернёт `nan`, то `x.fillna(nan)` оставит NaN внутри группы, **но transform может "автоматически" заменить NaN на 0 при сборке результата** (особенность Pandas).

Нужно явно управлять значением медианы, чтобы избежать непредвиденного замещения.

---

Ожидаемое правильное решение:

```python
def fill_with_median_or_nan(x):
med = x.median()
return x.fillna(med if pd.notna(med) else np.nan)

df['salary_filled'] = df.groupby('department')['salary'].transform(fill_with_median_or_nan)
```

Теперь в отделах, где медиана не существует, **NaN останется NaN**, а не превратится в 0.


🔥 Дополнительный подвох (для усложнения):

Что будет, если отдел состоит только из одного сотрудника с NaN?
→ Нужно ли обработать случай, где в отделе всего 1 запись и она NaN?


📝 Вывод:

Эта задача проверяет:

Понимание нюансов заполнения пропусков в Pandas
Внимательность к corner-case ситуациям
Умение работать с группами с частично или полностью отсутствующими данными

🔥 Отличная тренировка внимательности и глубины понимания Pandas!



tg-me.com/machinelearning_interview/1785
Create:
Last Update:

🧩 Задача для дата-сайентистов: "Средняя зарплата" (с подвохом)

📖 Описание задачи

У вас есть DataFrame df с данными о зарплатах сотрудников компании:


import pandas as pd

data = {
'employee_id': [1, 2, 3, 4, 5, 6],
'department': ['IT', 'IT', 'HR', 'HR', 'Finance', 'Finance'],
'salary': [100000, None, 50000, None, 70000, None]
}

df = pd.DataFrame(data)
print(df)


Результат:


employee_id department salary
0 1 IT 100000.0
1 2 IT NaN
2 3 HR 50000.0
3 4 HR NaN
4 5 Finance 70000.0
5 6 Finance NaN


В задаче требуется заполнить пропущенные значения зарплат в каждом отделе медианой зарплаты этого отдела.
Если медиана не может быть рассчитана (например, все значения NaN) — оставить NaN.

Вы пишете следующий код:


df['salary_filled'] = df.groupby('department')['salary'].transform(lambda x: x.fillna(x.median()))


Код выполняется без ошибок, но когда вы проверяете результат:


print(df)


Получаете:


employee_id department salary salary_filled
0 1 IT 100000.0 100000.0
1 2 IT NaN 100000.0
2 3 HR 50000.0 50000.0
3 4 HR NaN 50000.0
4 5 Finance 70000.0 70000.0
5 6 Finance NaN 70000.0


Всё вроде бы верно…

Но через неделю приходит заказчик и говорит:

> «Ты заполнил пропуски, но потом выяснилось, что в реальных данных в одном отделе все зарплаты NaN, а значит медиана не существует.
> А в твоём коде при такой ситуации почему-то появляется 0 вместо NaN!»

📝 Вопросы:

1. Почему появилось 0 (хотя ожидалось NaN)?
2. Как переписать код так, чтобы:
- Если медиана существует → заполнить ею NaN
- Если медиана не существует (все значения NaN) → оставить NaN

---

🎯 Что проверяет задача:

Понимание, как median() работает на пустой серии
Понимание, что fillna(np.nan) может привести к замещению на 0 при приведении типов
Умение работать с группами, где нет данных

---

💡 Подсказка:

Если `x.median()` вернёт `nan`, то `x.fillna(nan)` оставит NaN внутри группы, **но transform может "автоматически" заменить NaN на 0 при сборке результата** (особенность Pandas).

Нужно явно управлять значением медианы, чтобы избежать непредвиденного замещения.

---

Ожидаемое правильное решение:

```python
def fill_with_median_or_nan(x):
med = x.median()
return x.fillna(med if pd.notna(med) else np.nan)

df['salary_filled'] = df.groupby('department')['salary'].transform(fill_with_median_or_nan)
```

Теперь в отделах, где медиана не существует, **NaN останется NaN**, а не превратится в 0.


🔥 Дополнительный подвох (для усложнения):

Что будет, если отдел состоит только из одного сотрудника с NaN?
→ Нужно ли обработать случай, где в отделе всего 1 запись и она NaN?


📝 Вывод:

Эта задача проверяет:

Понимание нюансов заполнения пропусков в Pandas
Внимательность к corner-case ситуациям
Умение работать с группами с частично или полностью отсутствующими данными

🔥 Отличная тренировка внимательности и глубины понимания Pandas!

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1785

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Machine learning Interview from ca


Telegram Machine learning Interview
FROM USA